MARIE SKLODOWSKA-CURIE ACTIONS

Individual Fellowships (IF) Call: H2020-MSCA-IF-2015

PROCEED - Milestone1.1: Delivery of datasets for analysis, model initialization and evaluation that will also serve WP2, WP3, WP4 and WP5. (Month 4)

PROCess-based sEamless development of useful Earth system predictions over lanD (PROCEED) Grant Agreement N. 704585

Grantee: Andrea Alessandri Beneficiary Institution: KNMI Secondment Institution: ECMWF Primary Advisor: Prof. Bart Van Den Hurk Co-advisors (secondment): Gianpaolo Balsamo, Franco Molteni Start date of the Project: January 1 2017

Delivery of datasets for analysis, model initialization and evaluation that will also serve WP2, WP3, WP4 and WP5.

Gridded datasets from the latest developments being released by the Copernicus land monitoring service (http://www.copernicus.eu/) and the Global LAnd Surface Satellite product that is distributed by the Global Land Cover Facility at the University of Maryland (hereinafter GLASS-GLCF; http://glcf.umd.edu)¹ have been acquired to provide global description of the biophysical state of vegetation (e.g. leaf area index, fraction of green vegetation cover) and the coupling with the atmosphere and the energy/water budget (e.g. albedo, soil moisture, snow cover, land surface temperature, precipitation, circulation).

Variable	Dataset and Version	Reference	Spatial resolution	Time frequency	Units	Period	Policies for use
LAI	GLCF GLASS	http://glcf.umd.edu/data /lai/ (*) Xiao Z., et al., (2013) Liang et al. (2014)	0.05° × 0.05°	8 days	$\frac{m^2}{m^2}$ (-)	1981- 2014	Registration and acknowledgeme nt required
LAI	Copernicus	http://land.copernicus.e u/global/products/lai http://land.copernicus.eu/global /sites/default/files/products/GIO GL1_PUM_LAI1km- V2_II.21.pdf	1 Km × 1 Km	10 days	$\frac{m^2}{m^2}$ (-)	1999- present	Licence and acknow- ledgement required
Albedo	GLCF GLASS	http://glcf.umd.edu/data/abd (*) Liu et al., (2013) Liang et al. (2014)	0.05° × 0.05°	8 days	(-)	1982- 2014	Registration and acknowledgeme nt required
Albedo	Copernicus	http://land.copernicus.e u/global/products/albed o	1 Km × 1 Km	10 days	(-)	1999- present	Licence and acknow- ledgement required
Snow Cover	NSIDC DAAC	https://earthdata.asa.gov /about/daacs/daac-nside	Irregular: 180 x180 (lat x lon grid points)	7 days	fract (-)	1979- 2012	Registration and acknow- ledgement
Green Veget. Fraction	FCOVER Copernicus	http://land.copernicus.e u/global/products/fcover http://land.copernicus.eu/global /sites/default/files/products/GIO GL1_PUM_FCOVER1km- V2 I1.21.pdf	1 Km × 1 Km	10 days	fract (-)	1999- present day	Licence and acknow- ledgement

¹ GLCF server (http://glcf.umd.edu) is being discontinued in 2019. At the same time the data will be migrated to other servers such as mirror site at Beijing Normal University: http://glass-product.bnu.edu.cn

Veget, Continous Fields	LP DAAC (Land Processes Distributed Active Archive Center)	http://glcf.umd.edu/data /vcf/ (*) DiMiceli, et al., (2011) Liang et al. (2014)	$250 m \times 250 m$ (geotiff mosaics)	lyr	fract (-)	2000- 2010	Registration and acknowledgeme nt required
Modis land cover	GLCF Global Land Cover	http://glcf.umd.edu/data /lc/(*) Channan, S., K. Collins, and W. R. Emanuel. 2014.	0.5°×0.5°	1yr	fract (-)	2001- 2012	Registration and acknowledgeme nt required
Soil Moisture	ESA CCI v3.2	http://www.esa- soilmoisture-cci.org/ Dorigo and De Jeu (2016)	0.25° ×0.25°	daily	$\frac{m^3}{m^3}$ (-)	1979- 2015	Registration and acknowledgeme nt required

 Table 1: Satellite-derived Land-Vegetation datasets characteristics. (*) Please, note that <u>GLCF</u>

 server will be discontinued in 2019. Data migrating to mirror: http://glass-product.bnu.edu.cn

Satellite-derived Leaf Area Index (LAI), Surface Albedo (ALB), Snow Cover (SNC), Fraction of Green Vegetation cover (VegF), Vegetation Continous Fields (VCF), Land Cover Types (LCT) and Soil Moisture (SM) have been collected. See Table 1 for a summary of each dataset characteristics.

Station-based global gridded datasets of precipitation (PRE) and 2 meter Temperature (T2M) have been collected. See Table 2 for a summary of each dataset characteristics.

Surface climate and atmospheric variables at daily frequency have been collected from ERA-Interim Reanalysis (Berrisford et al., 2007; Dee et al., 2011; see Table 3 for a summary of variables and dataset characteristics). The ERA-Interim variables at original horizontal resolution (T255 spectral horizontal resolution, approximately 80km) are obtained from the data available on the KNMI climate.explorer (https://climexp.knmi.nl/; courtesy of Dr. Van den Oldenborg).

At a later stage in the project, the same surface climate variables have been collected from the new ECMWF ERA-5 reanalysis (Hersbach et al., 2018) released in the second half of 2018. The ERA-5 variables at original horizontal resolution (T639 spectral horizontal resolution, approximately 30km) are obtained via mars archive (https://www.ecmwf.int/en/forecasts/datasets/archive-datasets) accessible from the computing facilities at ECMWF.

Various sampling frequencies have been considered, ranging from monthly mean values for station-based gridded variables, to subseasonal frequency (i.e. weakly or subweakly) for satellite-derived data and to daily frequency for reanalysis. The time period covered by each variable vary depending on the availability of the source datasets. Tables 1-4 summarize the characteristics of the retrieved datasets.

A preprocessing of the data have been accomplished, including preliminary quality check, analysis of the spatial and time coverage in order to maximize overlap between the different data sources and to minimize the effect of undefined values (hereinafter NaN).

Variable	Dataset	reference	spatial	Time-	units	perio	policies	for
	and		resolution	frequen		d	use	
	version			cy				

PRE	CMAP v1701 (update 03/2017)	https://www.esrl.noaa.g ov/psd/data/gridded/dat a.cmap.html	2.5°x2.5°	pentads	mm d ⁻¹	1979- 2016	acknowled- gement
PRE	GPCP v2.2	https://precip.gsfc.nasa. gov/gpcp_v2.2_comb_ new.html	2.5°x2.5°	pentads	mm d ⁻¹	1979- 2016	acknowled- gement
Т2М	CRU TS v4.00	https://crudata.uea.ac.u k/cru/data/hrg/ Harris et al. (2014)	0.5°x0.5°	monthly	mm month ⁻¹	1901- 2015	registration and acknow- ledgement (share alike)
PRE	CRU TS v4.00	https://crudata.uea.ac.u k/cru/data/hrg/ Harris et al. (2014) doi:10.1002/joc.3711	0.5°x0.5°	monthly	mm month ⁻¹	1901- 2015	registration and acknow- ledgement (share alike)

Table 2: Station-based gridded datasets characteristics.

Reference	Spatial resolution	Time frequency	period	policies for use	Variables	Units
Berrisford et al., 2007; Dee et al., 2011	T255, ~80kmx80	daily	1979- present	acknow- ledgeme	T2m	Kelvin
Data obtained from KNMI climate explorer, courtesy of Geert Jan Van den Oldenborg.	km			nt	Geopotential Height (Z500) Zonal wind (U850)	m^2/s^2
						m/s
					Meridional wind (V850)	m/s
					Surf Solar Radiation (SSR)	W/m^2

 Table 3: ERA-Interim datasets characteristics.

Reference	Spatial resolution	Time frequency	period	Policy for use	Variables	Units
Hersbach et al., 2018	Т639,	daily	1979-	Licence and acknowledgement	T2m	Kelvin
	~30kmx30km		present		Geopotential Height (Z500)	m^2/s^2
					Zonal wind (U850)	m/s

		Meridional wind (V850)	m/s
		Surf Solar Radiation (SSR)	W/m^2

Table 4: ERA-5 datasets characteristics.

References:

Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala, 2009: The ERA-Interim archive. ERA report series, 1.

Channan, S., K. Collins, and W. R. Emanuel. 2014. Global mosaics of the standard MODIS land cover type data. University of Maryland and the Pacific Northwest National Laboratory, College Park, Maryland, USA.

Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

DiMiceli, C.M., M.L. Carroll, R.A. Sohlberg, C. Huang, M.C. Hansen, and J.R.G. Townshend (2011), Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250 m Spatial Resolution for Data Years Beginning Day 65, 2000 - 2010, Collection 5 Percent Tree Cover, University of Maryland, College Park, MD, USA.

Harris, I., Jones, P.D., Osborn, T.J. and Lister, D.H. (2014), Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol., 34: 623–642. doi:10.1002/joc.3711

International Journal of Applied Earth Observation and Geoinformation Volume 45, Part B, Pages 107-244 (March 2016) Advances in the Validation and Application of Remotely Sensed Soil Moisture - Part 1 Edited by Wouter A. Dorigo and Richard A.M. de Jeu

Liang, S., X. Zhang, Z. Xiao, J. Cheng, Q. Liu, and X. Zhao, 2014: Global LAnd Surface Satellite (GLASS) Products: Algorithms, Validation and Analysis, Springer, doi:10.1007/978-3-319-02588-9

Liu, N., Liu, Q., Wang, L., Liang, S., Wen, J., Qu, Y., & Liu, S. (2013). A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrology and Earth System Sciences, 17, 2121-2129, doi:2110.5194/hess-2117-2121-2013

Xiao Z., S. Liang, J. Wang, et al., Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time Series MODIS Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2013, doi:10.1109/TGRS.2013.2237780.